Optimizing an intermittent stretch paradigm using ERK1/2 phosphorylation results in increased collagen synthesis in engineered ligaments.

نویسندگان

  • Jennifer Z Paxton
  • Paul Hagerty
  • Jonathan J Andrick
  • Keith Baar
چکیده

Dynamic mechanical input is believed to play a critical role in the development of functional musculoskeletal tissues. To study this phenomenon, cyclic uniaxial mechanical stretch was applied to engineered ligaments using a custom-built bioreactor and the effects of different stretch frequency, amplitude, and duration were determined. Stretch acutely increased the phosphorylation of p38 (3.5±0.74-fold), S6K1 (3.9±0.19-fold), and ERK1/2 (2.45±0.32-fold). The phosphorylation of ERK1/2 was dependent on time, rather than on frequency or amplitude, within these constructs. ERK1/2 phosphorylation was similar following stretch at frequencies from 0.1 to 1 Hz and amplitudes from 2.5% to 15%, whereas phosphorylation reached maximal levels at 10 min of stretch and returned toward basal within 60 min of stretch. Following a single 10-min bout of cyclic stretch, the cells remained refractory to a second stretch for up to 6 h. Using the phosphorylation of ERK1/2 as a guide, the optimum stretch paradigm was hypothesized to be 10 min of stretch at 2.5% of resting length repeated every 6 h. Consistent with this hypothesis, 7 days of stretch using this optimized intermittent stretch program increased the collagen content of the grafts more than a continuous stretch program (CTL=3.1%±0.44%; CONT=4.8%±0.30%; and INT=5.9%±0.56%). These results suggest that short infrequent bouts of loading are optimal for improving engineered tendon and ligament physiology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Intermittent and Incremental Cyclic Stretch on ERK Signaling and Collagen Production in Engineered Tissue.

Intermittent cyclic stretching and incrementally increasing strain amplitude cyclic stretching were explored to overcome the reported adaptation of fibroblasts in response to constant amplitude cyclic stretching, with the goals of accelerating collagen production and understanding the underlying cell signaling. The effects of constant amplitude, intermittent, and incremental cyclic stretching r...

متن کامل

Differential dependence of stretch and shear stress signaling on caveolin-1 in the vascular wall.

The role of caveolae in stretch- versus flow-induced vascular responses was investigated using caveolin 1-deficient [knockout (KO)] mice. Portal veins were stretched longitudinally for 5 min (acute) or 72 h (organ culture). Basal ERK1/2 and Akt phosphorylation were increased in organ-cultured KO veins, as were protein synthesis and vessel wall cross sections. Stretch stimulated acute phosphoryl...

متن کامل

Lewis lung carcinoma regulation of mechanical stretch-induced protein synthesis in cultured myotubes.

Mechanical stretch can activate muscle and myotube protein synthesis through mammalian target of rapamycin complex 1 (mTORC1) signaling. While it has been established that tumor-derived cachectic factors can induce myotube wasting, the effect of this catabolic environment on myotube mechanical signaling has not been determined. We investigated whether media containing cachectic factors derived ...

متن کامل

Vitamin C-enriched gelatin supplementation before intermittent activity augments collagen synthesis.

BACKGROUND Musculoskeletal injuries are the most common complaint in active populations. More than 50% of all injuries in sports can be classified as sprains, strains, ruptures, or breaks of musculoskeletal tissues. Nutritional and/or exercise interventions that increase collagen synthesis and strengthen these tissues could have an important effect on injury rates. OBJECTIVE This study was de...

متن کامل

Ascorbic acid promotes 3T3-L1 cells adipogenesis by attenuating ERK signaling to upregulate the collagen VI

Background Type VI collagen is supposed to be a regulation factor in adipogenesis. This study aimed to assess the promoting effect of vitamin C (VC) on adipogenic differentiation of preadipocytes as well as its mechanism. Methods Five sets of different combinations of chemicals were used to inhibit synthesis of type I to VI collagens, blocking ERK1/2 phosphorylation during adipogenesis of 3T3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Tissue engineering. Part A

دوره 18 3-4  شماره 

صفحات  -

تاریخ انتشار 2012